Speech Daemon — Easy access to speech synthesis

Mastering the Babylon of TTS’
for Speech Daemon 0.0

Tomas Cerha cerha@brailcom.org
Hynek Hanke hanke@volny.cz
Milan Zamazal pdm@brailcom.org

mailto:cerha@brailcom.org
mailto:hanke@volny.cz
mailto:pdm@brailcom.org

This manual documents Speech Daemon, version 0.0.
Copyright (©) 2001, 2002, 2003 Brailcom, o.p.s.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation License".

Table of Contents

1 How toread thismanual 1
2 Introduction................. ..., 2
21 Whyand how...... 2

2.2 Current Statet 2

2.3 Design ... 4

2.4 User'spoint of view 7

2.5 Programmer’s point of view 7

3 Invoking, 8
3.1 Verbosity 8

3.1.1 Level 0. 8

3.1.2 Level 1... ... 8

3.1.3 Level 2.. .. 8

314 Level 3. o 8

315 Level 4. ... 8

3.1.6 Level 5. ..o 8

4 Internal structure.......................... 9
4.1 Definitions. 9

4.2 SEIVET COTE ..ottt e e et e et et e et ettt 9

4.3 Output modules............ 9

5 PublicAPI............ ..., 12
6 Speech Synthesis Internet Protocol (SSIP).. 13
6.1 Generalrules o 13

6.2 SSIP commandsS.c.ouiueiiiieeeaia. 14

6.2.1 Speech synthesis and sound output.............. 14

6.2.2 Controlling speech output 16

6.2.3 Parameter setting.............. 16

6.2.4 Retrieving information 18

6.2.5 History handling................ 19

6.2.6 Other commands 23

6.3 Returncodes 23

6.4 Example of an SSIP relation 23

7 Priorities............ciiiiiiiiiiiiiin. 25
T Level 1. ..o 25

T.2 Level 2. .. 25

7.3 Level 3. .. 25

7.4 How to use them wisely............. 25

8 Multiple output modules.................. 27

9 Message history 28

9.1 AccessTights. 28

10 Speech parameters....................... 29

10.1 Language selection 29

10.2 Speed ... 29

10.3 Punctuation mode 29

10.4 Prosody . ..o 29

105 Pitch. ..o 29

10.6 Voice type . ..o 29

10.7 Spellingo 30

10.8 Capital letters recognition 30

11 Configuration 31

Appendix A Keynames............ooovunn.. 32

A1l Auxiliary Keys.o 32

A.2 Control character keys 32

A.3 Special key names 34

Appendix B Standard sound icons 35

Appendix C Standard spelling tables......... 36

Appendix D Standard sound tables 37

Appendix E Standard voices................. 38

Appendix F GNU General Public License 39

Preamble 39
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION 40

How to Apply These Terms to Your New Programs............ 44

Appendix G GNU Free Documentation License
.. 46

G.0.1 ADDENDUM: How to use this License for your
documentso i 52

Concept indexciiiiiiiinnnnnnn.. 53

ii

Chapter 1: How to read this manual 1

1 How to read this manual

-> there should be a simple map of the manual and where to search for different concepts

Chapter 2: Introduction 2

2 Introduction

2.1 Why and how

Speech Daemon project comes to provide a device independent layer for speech synthesis.
It should provide a simple interface for client applications (applications, that want to speak)
as well as for device driver modules (for particular speech synthesis).

High quality speech synthesis has been available for a long time and now it’s usable even
by ordinary users on their home PC’s. It comes sometimes as a necessity, sometimes as a
good feature for programs to provide speech output. There is a wide field of possible uses
from educational software, through specialized systems (hospitals, laboratories, telephony
servers). For visually impaired users it is one of the two essential ways of getting the output
from computer (the second one is Braille display). That’s also where Speech Daemon comes
from.

There are different speech synthesizers with different capabilities. Some of them are
hardware, some of them are software. Some of them are Free Software and are are available
on the Internet. However, none of them is pre-installed in one of the widely used GNU /Linux
distributions. Programmers have really hard times when they want to make their program
speak because they need to find some suitable synthesizer (long hours of experiments and
so on...) and then make it work with their program. They often need to write output device
drivers for these programs or hardware devices and are doing it again and again. You can
imagine it all fails when an innocent user executes two programs with speech output at once
— if they even start both (what I doubt), they will be shouting one over the other. This
makes it very hard for programmers to implement speech support to their programs (for
blind users or simply to make a better user interface) and it’s one of the reasons we still
don’t fully exploit what speech synthesis technology offers.

In an ideal world, programmers could use similar commands for speech synthesis as
they do for normal text output (printf, puts, ...). In an ideal world, there would be some
speech_printf() that would take care of saying your message in the right time without inter-
rupting others, without you being obligated to take care of how exactly the communication
with speech synthesizer is implemented and without you having to worry about what syn-
thesizer to use and if it’s available. In an ideal world, there would be some speech synthesizer
in each GNU/Linux distribution and some speech daemon taking care of all applications
that want to speak, allowing user to configure speech parameters and providing simple in-
terface (as speech_printf()) through some shared library for programmers. It will be a long
way until we achieve this state of things, but with Speech Daemon, we are taking the first
steps...

2.2 Current state

Today, the development of programs and new technologies connected with speech syn-
thesis under GNU /Linux is centered around two main points: visually impaired people and
pure development. Although some fields are beginning to use synthesis for different pur-
poses, like telephony servers, these are still like drops of water in the ocean. Here is a short

Chapter 2: Introduction 3

(definitely not exhaustive list) software synthesizers, hardware synthesizers and applications
known to work under GNU/Linux.

1. Speech Synthesizers

e Hardware synthesizers

Hardware synthesizers are the devices, which may be connected to PC. Mostly they
are external, connected via serial or parallel port. There are also some internal
devices for ISA bus or USB. Application may send textual data to the port and
the device converts it to spoken letters and words. Data may contain also several
control sequences in the form of escaped characters as commands. The problem,
we are facing, is that each of these devices uses its own communication protocol.

e Software synthesizers

Festival

Festival is a multi-lingual Free Software text to speech synthesizer with high
quality speech databases available. One of it’s problems is that some of the
most important databases are not free. (e.g. the database for British English
is non-free). Other problem is that Festival is intended rather as a platform
for research and development than as an end-user product and therefore is big
and not-so-easy to install. The problem we face as Speech Daemon Developers
is that it’s too slow to be really useful for most applications.

Flite

Flite stands for Festival Lite and it is a light fully free English speech software
synthesizer with good quality of sound, developed by the authors of festival as
an end-user product. It’s very fast, however, we currently don’t know how to
configure it (it seems it is not possible yet) and it seems that the developers
have some problems with importing the voices from Festival. Speech Daemon
currently uses Flite as it’s primary output module for English.

Odmluva

Odmluva is a simple (and very light) Czech speech synthesizer available under
the terms of GNU GPL. We are working on it’s support in Speech Daemon.

Epos

Epos is Czech synthesis. It is an academic project and it already gives quite
good results, but some parts are covered by a proprietary license.

Free TTS

Free TTS is some JAVA-based text-to-speech system. We didn’t checked it
yet.

IBM ViaVoice

ViaVoice is a multi-lingual software synthesizer available for GNU /Linux. The
main problem is that ViaVoice is not free (as in freedom). Until IBM changes
its license, we can’t use it in Free World / Free Operating System and therefore
it’s not and will not be supported in Speech Daemon.

MBROLA

MBROLA is a multi-lingual software synthesis available for GNU/Linux.
MBROLA is not free as in freedom, although it’s gratis. The same problems
as with IBM ViaVoice prevents us to include it in Speech Daemon.

Chapter 2: Introduction 4

2. Speaking applications

— Emacspeak
The Emacspeak (by T. V. Raman <raman@cs.cornell.edu>) software package
provides speech output for Emacs, and includes ,,speech servers” for the Dectalk
speech synthesizers.
The Emacspeak speech servers package provides servers for several additional syn-
thesizers. None of these programs are normally run by the user directly. Instead,
they are run by Emacs. That is: Emacs runs the Emacspeak code, which executes
Tecl, which interprets the server code. This approach is too closely ,,wired” to
usage with Emacspeak, so it can’t be used for our general purposes.
This does not mean, that these servers are completely a bad idea and we can not
use them. Thanks to the author Jim Van Zandt <jrv@vanzandt.mv.com>, we can
learn from the sources and write the output driver modules for Speech Daemon
(emacspeak-ss is GPL).

— GTK+ (Gnome Accessibility project)
GNOME windowing toolkit library.

— wxWindows
Windowing toolkit library.

— Java AWT
Windowing toolkit library.

— FOX toolkit
Windowing toolkit library.

— Speakup
Speakup is a kernel patch that provides low level speech output for visually im-
paired, so it works even if there is some problem in configuration and you can’t
run Emacspeak.

— Brltty

Brltty is mainly a driver for different Braille displays, but also supports some kind
of software synthesis.

We hope to be able to integrate Speech Daemon into these projects in the future.
2.3 Design

The communication between all these applications and synthesizers is a great mess.
For this purpose, we wanted Speech Daemon to be a layer separating applications and
synthesizers so that applications wouldn’t have to care about synthesizers and synthesizers
wouldn’t have to care about interaction with applications.

We decided we would implement Speech Daemon as a server receiving commands from
applications over a protocol called SSIP, parsing them and if it’s necessary and calling
appropriate functions of output modules communicating with the different synthesizers.
These output modules are implemented as plug-ins, so that the user can just load a new
module if he wants to use new synthesizer.

mailto:raman@cs.cornell.edu
mailto:jrv@vanzandt.mv.com

Chapter 2: Introduction 5

Each client (application that wants to speaks) opens a socket connection to Speech
Daemon and calls functions like spd_say(), spd_stop(), spd_pause() provided by the shared
library. This shared library is still on the client side and sends Speech Daemon SSIP
commands over the socket. When these arrive at Speech Daemon, it parses them, reads the
text that should be said and put it in a queues according to the priority of this message
and other criteria. It then decides when, with which parameters (set up by the client and
the user) and on which synthesizer it will say the message. These requests are handled by
the output plug-ins (output modules) for different hardware and software synthesizers and
then said aloud.

Chapter 2: Introduction 6

See this figure:

applications client libraries SSIt
elisp |
Emacspeak library
Speakup
Bash C library

H story client

Conf i guration
cli ent Perl

binding

Chapter 2: Introduction 7

See also the detailed description of SSIP, public API and module API.

2.4 User’s point of view

In this section we will try to describe what can Speech Daemon offer to common users.
But every programmer interested in this program should also read this because it’s very
important to understand.

Sketch:
e casy configuration of different speaking applications, central maintenance
e the ability to freely choose which synthesizer with which application
e less time devoted to configuration and tuning different applications and synthesis

e history of said messages for visually impaired

2.5 Programmer’s point of view

Sketch:
e casy way to make your applications speak
e 10 time spent on configuration/debugging interface with different synthesizers
e 10 need to take care about configuration of voice
e casy way to make the application accessible to visually impaired people

o different facilities like the one providing a command line functionality

Chapter 3: Invoking 8

3 Invoking

3.1 Verbosity

There are 6 different verbosity levels of Speech Daemon logging. 0 means there is no
output, while 5 means that nearly all the information about Speech Daemon working is
written to standard output.

3.1.1 Level O

No information.
3.1.2 Level 1
e Information about loading and exiting.

3.1.3 Level 2

e Information about errors that occurred.

e Allocating and freeing resources on start and exit.
3.1.4 Level 3

e Information about accepting/rejecting/closing clients’ connections.

e Information about invalid client commands.
3.1.5 Level 4

e Every received command is output.

e Information about proceeding the command output

e Information about queueing/allocating messages.

e Information about the function of history, sound icons and other facilities.

e Information about the work of the speak() thread.

3.1.6 Level 5

This is only for debugging purposes and can output really *much* data. Use with
caution.

e Also received data (messages etc.) is output.

Chapter 4: Internal structure 9

4 Internal structure

4.1 Definitions

Server side is the side where Speech Daemon operates. It means server core, output
modules and partly SSIP which is the layer for communication between server side and
client side.

Client side is where particular applications wanting to speak are, where the shared library
implementing public API is located and partly SSIP which is the layer for communication
between server side and client side.

Client means an application that wants to speak or an application that is used to control
Speech Daemon. (Of course different combinations are possible.)

Server core is the central part of Speech Daemon composed of two threads. One is listen-
ing on the user socket, parsing and proceeding incoming commands, and saving incoming
text to queues. The other thread takes messages from queues and sends them to appropriate
synthesizers.

Output module is a backend of Speech Daemon in the form of plug-in. It takes care of
communication with the particular synthesizer and provides only abstract functions to the
server core.

Shared library or Public API is a front-end of Speech Daemon that provides polished
functions programmers should use to send commands to the server.

SSIP is the layer (communication protocol) between server side (server core) and client
side (shared library). It stands for Speech Synthesis Internet Protocol. Client programs
should never use it directly.

Socket or File descriptor represents the particular connection between a client and server.
In C, it’s and integer variable.

4.2 Server core

see sources, I'll try to write this section soon

4.3 Output modules

Output modules for Speech Daemon have the form of a glib plug-ins located in
src/modules/. Each output module is a data structure composed of some parameters and
pointers to it’s functions.

typedef struct {

gchar *name;

gchar *description;

gchar *filename;

gint (xwrite) (const gchar *, gint, voidx*);

gint (*stop) (void);

Chapter 4: Internal structure 10

gint (*¥is_speaking) (void);
gint (*close) (void);
} OutputModule;
This structure is defined in ‘intl/modules.h’ and therefore this header must be included
in every plug-in source code.

#include "modules.h"

Also one other file called ‘intl/fdset.h’ where the FDSetElement structure is defined
must be included to be able to handle the different speech synthesis settings.

#include "fdset.h"

Each output module has associated a module_init function that is called at the starting
of Speech Daemon. After doing the necessary initialization, it must return a filled structure
of the type OutputModule (defined above).

OutputModule *module_init(void){

return &module_flite;
}

Now what are the 4 functions: flite_write, flite_stop, flite_is_speaking and flite_close?
This is the core of every output module and you have to define their bodies in the source
code of your plug-in.

gint synthesizer_write const gchar *data, gint len, [Output module functions]
TFDSetElement* set
This is the function where actual speech output is produced. It is called every time
Speech Daemon decides to send a message to synthesis. The data of length len are
passed in data. Additionally, the structure containing settings associated to this
particular message is passed, however only few options are important for output
modules.

Each output module should take care of setting the output device to these parameters
(the other ones are handled independently in other parts of Speech Daemon):

(signed int) set->speed

(signed int) set->pitch

(char*) set->language

(int) set->voice_type

Speed and pitch are values between -100 and 100 included. 0 is the default value
that represents normal speech flow. So -100 is the slowest (or lowest) and +100 is the
fastest (or highest) speech.

(We should establish a constant scale referred to some text, standard speeds and
different associated times. This will probably be the work of the person who will
program the first real output module. We need to chose some longer text, decide
what speed of reading we consider 0 and what we consider, say, +-50, measure the
times needed to read it at these speeds and put it there in documentation as our
standard scale.)

The language parameter is given as a null-terminated string containing the name of
the language in English in lowercase (e.g. "english", "czech", "spanish").

Chapter 4: Internal structure 11

voice_type is used only when the output module supports more types of voices for
this particular language. The values represent (from ‘intl/fdset.h’)

typedef enum {
MALE = 0,
FEMALE = 1,
CHILD_MALE =
CHILD_FEMALE

}YEVoiceType;

2,
=3

We can consider also other voice types.

This function should return 0 if it fails and some non-0 value if the delivery to the
synthesis is successful. Formerly we thought that it should return the number of
bytes written, but it’s still not clear how to handle messages that have to be divided
in more parts (for example if the output device has a finite size buffer).

gint synthesizer_stop void [Output module functions]
This function should stop the synthesis of the currently spoken message immediately
and throw away the rest of the message.

It should return 0 on success, -1 otherwise.

gint synthesizer_is_speaking void [Output module functions]
This function is very important to let Speech Daemon know how to regulate the speech
flow between different queues, programs and even other synthesizers. On calling it,
the output module must decide whether there is currently any output being produced
in the speakers.

This can be a very hard problem and it’s not clear how to do it with different synthe-
sizers. If it’s not possible to return an exact value, at least some estimate should be
calculated. But such an inaccurate value can highly reduce the usefulness of an even
otherwise very good plug-in. To some degree, this is still an open question.

It should return 0 if the synthesis is silent, 1 if it’s speaking.

gint synthesizer_close void [Output module functions]
This function is called when Speech Daemon terminates. There are no special re-
quirements on what the output plug-in should do.

It should return 0 on success, -1 otherwise.

Chapter 5: Public API

5 Public API

12

Chapter 6: Speech Synthesis Internet Protocol (SSIP) 13

6 Speech Synthesis Internet Protocol (SSIP)

Clients communicate with Speech Daemon via the Speech Synthesis Internet Protocol
(SSIP). The protocol is the actual interface to Speech Daemon.

Usually, you don’t need to use SSIP directly, you can use one of the programming
interfaces, see Chapter 5 [Public API], page 12, wrapping SSIP with programming library
calls. This is a recommended way of communication with Speech Daemon. However, in
case your programming environment is not supported by any of the provided interfaces or
you prefer to communicate with Speech Daemon directly for any reason, you can find the
complete SSIP description here.

6.1 General rules

SSIP communicates with the clients through a defined set of text commands, in the way
usual in common Internet protocols. The characters sent to and from Speech Daemon are
encoded using the UTF-8 encoding.

Each SSIP command, unless specified otherwise, consists of exactly one line. The line is
sent in the following format:

command arg ...

where command is a case insensitive command name and args are its arguments sepa-
rated by spaces. The command arguments which come from a defined set of values are case
insensitive as well. The number of arguments is dependent on the particular command and
there can be commands having no arguments.

All lines of SSIP input and output must be ended with the pair of carriage return and
line feed characters, in this order.

When you connect to Speech Daemon, you should at least set your client name, through
the SET CLIENT_NAME command, Section 6.2.3 [Parameter setting commands|, page 16. This
is important to get a proper identification of your client — to allow managing it from the
control center application and to identify it in a message history browser. You might want
to set other connection parameters as well, look for more details in Section 6.2.3 [Parameter
setting commands], page 16.

Connection to Speech Daemon is preferably closed by issuing the QUIT command, see
Section 6.2.6 [Other commands|, page 23.

SSIP is a synchronous protocol — you send commands and only after a complete response
from SSIP arrives back you are allowed to send the next command. Usually, the connection
to Speech Daemon remains open during the whole run of the particular client application.
If you close the connection and open it again, you must set all the previously set parameters
again, Speech Daemon doesn’t store session parameters between connections.

The protocol allows you to perform commands regarding other currently connected or
previously connected clients. This allows you to write a control application managing or
browsing all the messages received by the current Speech Daemon process. The mechanism
is completely relaxed, there are no restrictions on accessing messages of other clients and
users and managing some aspects of their sound output.

SSIP replies of Speech Daemon are of the following format:

Chapter 6: Speech Synthesis Internet Protocol (SSIP) 14

ccc-line 1
ccc-line 2

ccc-line n-1
ddd line n
where n is a positive integer, and ccc and ddd are three-digit long numeric codes identify-
ing the result of the command. The last line determines the overall result of the command,
the result code is followed by an English message describing the result of the action in a
human readable form.

6.2 SSIP commands

Commands recognized by SSIP can be divided into several groups: Speech synthesis and
sound output commands, speech control commands, parameter setting commands, com-
mands retrieving information about current client and server settings, command handling
the message history, and other commands. Each of these command groups is described in
one of the following sections.

In the command descriptions, the command is written together with its arguments.
Optional arguments are enclosed by square brackets ([and]), alternatives are separated
by the vertical rule (|) and are grouped within braces ({ and }) or square brackets for
mandatory or optional arguments respectively, literal arguments values are typeset in lower
letters (they are case insensitive), and variable arguments are typeset like this. Ellipsis
denoted by three dots (...) means repetition (zero or more times) of all the arguments
within the current brackets.

6.2.1 Speech synthesis and sound output

These commands invoke Speech Daemon mechanisms transforming given data and pa-
rameters into an audio sample and sending it onto an audio device. The particular way
how the message is handled is defined by the Speech Daemon configuration mechanism (see
Chapter 11 [Configuration], page 31) and are out of scope of SSIP.

SPEAK Start receiving a text message and synthesize it. After sending a reply to
the command, Speech Daemon waits for the text of the message. The text
can spread over any number of lines and is finished by an end of line marker
followed by the line containing the single character . (dot). Thus the complete
character sequence closing the input text is CR LF . CR LF. If any line within
the sent text starts with a dot, an extra dot is prepended before it.

During reception of the text message, Speech Daemon doesn’t send response to
the particular lines sent. The response line is sent only immediately after the
SPEAK command and after receiving the closing dot line.

Speech Daemon can start speech synthesis as soon as a sufficient amount of the
text arrives, it generally needn’t (but may) wait until the end of data marker
is received.

There is no explicit upper limit on the size of the text, but the server adminis-
trator may set one in the configuration or the limit can be enforced by available

Chapter 6: Speech Synthesis Internet Protocol (SSIP) 15

system resources. If the limit is exceeded, the whole text is accepted, but its
exceeding part is ignored and an error response code is returned after processing
the final dot line.

This command, unlike all other commands, stores the received text into the
message history.

CHAR char
Speak letter char. char can be any character representable by the UTF-8 en-
coding.

This command is intended to be used for speaking single letters, e.g. when
reading a character under cursor or when spelling words.

KEY key-name
Speak key identified by key-name. The command is intended to be used for
speaking keys pressed by the user.

key-name is a case sensitive symbolic key name. It is composed of a key name,
optionally prepended with one or more prefixes, each containing an auxiliary
key name and the underscore character.

Key name may contain any character excluding control characters (the char-
acters in the range 0 to 31 in the ASCII table, characters in the range 128 to
159 in the Latin-* tables and other “invisible” characters), spaces, underscores,
and double quotes.

The recognized key names are:
Any single UTF-8 character, excluding the exceptions defined above.

Any of the symbolic key names defined in Appendix A [Key names],
page 32.

Examples of valid key names:

a
A

shift_a

shift_A

i

$

enter
shift_kp-enter
control_alt_delete
control

SOUND_ICON icon-name
Send a sound identified by icon-name to the audio output. icon-name is a
symbolic name of the given sound from the standard set listed in Appendix B
[Standard sound icons], page 35, or another name from the particular Speech
Daemon sound icon configuration.

Chapter 6: Speech Synthesis Internet Protocol (SSIP) 16

6.2.2 Controlling speech output

These commands can stop or resume speech or audio output. They all affect only the
synthesis process and output to a sound device, they do not affect the message history.

STOP { id | all | self }

Immediately stop outputting the current message (whatever it is — text, letter,
key, or sound icon) from the identified client, if any is being output. If the
command argument is self, last message from the current client connection
is stopped. If it is all, stop currently output message or messages from all
the clients. Otherwise, argument id must be given as an positive integer and
the currently processed message from the client connection identified by id is
stopped; if there is none such, do nothing.

CANCEL { id | all | self }
This command is the same as SPEAK, with the exception that it stops not yet
output messages as well. All currently queued messages are stored into the
message history without being sent to the audio output device.

PAUSE { id | all | self }
Stop audio output immediately, but do not discard anything. All the currently
output and currently or later queued messages are postponed and saved for
later processing, until the corresponding RESUME command is received.

The meaning of the command arguments is the same as in the STOP command.

RESUME { id | all | self }
Cancel the effect of the previously issued PAUSE command. Note that messages
of the priority 3 received during the pause are not output (but they remain
stored in the message history).

It is an error to send the RESUME command when the output corresponding
to the given argument is not paused by a previous invocation of the PAUSE
command. Such an error is signalled by a 4XX return code.

The meaning of the command arguments is the same as in the STOP command.

6.2.3 Parameter setting

The SET command sets various control parameters of Speech Daemon. The parameter
is always denoted by the first command argument.

All the settings take effect to the client connection (only) and until the parameter setting
is changed by another invocation of the appropriate SET command or until the connection
is closed.

SET CLIENT_NAME user :client :component
Set client’s name. Client name consists of the user name, client (application)
identification, and the identification of the component of the client (applica-
tion). Each of the parts of the client name may contain only alphanumeric
characters.

For example, for a client called lynx that creates Speech Daemon connection
for its command processing, the name could be set in the following way:

Chapter 6: Speech Synthesis Internet Protocol (SSIP) 17

SET CLIENT_NAME joe:lynx:cmd_processing

The client name is used in the server configuration settings, client listings and
message history handling. All its three parts can be arbitrary, but it’s important
to define and follow rules for each application supporting Speech Daemon, so
that a Speech Daemon user can configure all the aspects of the speech output
easily.

Usually, this command should be sent as the very first command when a new
connection to Speech Daemon is established.

SET LANGUAGE language
Set recommended language for this client to language. language is the name of
the language according to RFC 1766.

For example, to set the preferred language to Czech, you send the following
command:

SET LANGUAGE cs

SET PRIORITY n
Set message priority to n. n must be one of the values 1, 2, and 3.

SET PUNCTUATION { all | some | none }
Set punctuation mode to the given value. all means read all punctuation char-
acters, none read no punctuation characters, some means read only punctuation
characters given in the server configuration or defined by the client’s last SET
IMPORTANT_PUNCTUATION command.

SET IMPORTANT_PUNCTUATION chars
Set punctuation characters read when SET PUNCTUATION some is set to those in
chars. chars is a sequence of the required characters, without any spaces. char
may not contain control characters and may not begin with double quotes.

SET PUNCTUATION_TABLE table
Use punctuation table table for spelling punctuation characters. table must
be one of the punctuation table names returned to the command LIST
PUNCTUATION_TABLES command, see Section 6.2.4 [Information retrieval
commands|, page 18.

SET SPELLING_TABLE table
Set spelling table to table. table must be one of the spelling table names
returned to the command LIST SPELLING_TABLES command, see Section 6.2.4
[Information retrieval commands|, page 18.

There is a standard set of spelling tables defined in Appendix C [Standard
spelling tables], page 36.

SET TEXT_TABLE table
Set text table to table. table must be one of the text table names returned
to the command LIST TEXT_TABLES command, see Section 6.2.4 [Information
retrieval commands]|, page 18.

Chapter 6: Speech Synthesis Internet Protocol (SSIP) 18

SET SOUND_TABLE table
Set sound table to table. table must be one of the text table names returned
to the command LIST SOUND_TABLES command, see Section 6.2.4 [Information
retrieval commands]|, page 18.

There is a standard set of sound tables defined in Appendix D [Standard sound
tables], page 37.

SET VOICE name
Set the voice identified by name. name must be one of the voice identifiers
returned to the command LIST VOICES, see Section 6.2.4 [Information retrieval
commands|, page 18.

There is a standard set of voice identifiers defined in Appendix E [Standard
voices|, page 38.

SET RATE n
Set the rate of speech. n is an integer value within the range from -100 to 100,
with 0 corresponding to the default rate of the current speech synthesis output
module, lower values meaning slower speech and higher values meaning faster
speech.

SET PITCH n
Set the pitch of speech. n is an integer value within the range from -100 to
100, with 0 corresponding to the default pitch of the current speech synthesis
output module, lower values meaning lower pitch and higher values meaning
higher pitch.

SET HISTORY { on | off }
Enable (on) or disable (off) storing of received messages into history.

This command is intended for use by message history browsers and usually
should not be used by other kinds of clients.

6.2.4 Retrieving information

The LIST command serves for retrieving information that can be presented to the user
for selection of the values to the SET command. The information listed is selected according
to the first argument of the LIST command.

LIST SPELLING_TABLES
List the names of all the spelling tables available on the server. Each table
name is listed on a separate line. Each name may contain only alphanumeric
characters and underscores.

Example Speech Daemon response:

200-sptable2
200-sptablel
200-sptabled4
200-special-table
200 OK Tables listed.

The standard spelling tables are always listed, see Appendix C [Standard
spelling tables|, page 36.

Chapter 6: Speech Synthesis Internet Protocol (SSIP) 19

LIST PUNCTUATION_TABLES
Similar to LIST SPELLING_TABLES, but lists the names of the available punctu-
ation spelling tables.

LIST TEXT_TABLES
Similar to LIST SPELLING_TABLES, but lists the names of the available text
mapping tables.

LIST SOUND_TABLES
Similar to LIST SPELLING_TABLES, but lists the names of the available sound
mapping tables.

The standard sound tables are always listed, see Appendix D [Standard sound
tables], page 37.

LIST VOICES
Similar to LIST SPELLING_TABLES, but lists the available voice names.

The standard voices are always listed, see Appendix E [Standard voices],
page 38.

6.2.5 History handling

History is handled by the HISTORY command. It can take many forms, described below,
that allow browsing, retrieving and repeating stored messages. In each invocation of the
HISTORY command there is no difference between processing spoken or not spoken messages,
all the received messages are processed.

There can be history cursor pointing on some message in the history. You can move
it across history messages and retrieve the message the cursor is pointing to, using the
HISTORY CURSOR set of command arguments described below.

HISTORY GET CLIENT_LIST
List known client names, their identifiers and status. Each connection is listed
on a separate line in the following format:

id name status

where id is a client id that can be used in other history handling requests or in
the speech output control commands (see Section 6.2.2 [Speech output control
commands|, page 16), name is the client name as set through the SET CLIENT_
NAME command, and status is 1 for connected clients and 0 for disconnected
clients. ids are unique within a single run of Speech Daemon.

Sample reply of Speech Daemon:

240-0 joe:speechd_client:main O
240-1 joe:speechd_client:status O
240-2 unknown:unknown:unknown 1
240 0K CLIENTS LIST SENT

HISTORY GET CLIENT_ID
Return id of the client itself.

The id is listed on a separate line in the following format:

Chapter 6: Speech Synthesis Internet Protocol (SSIP) 20

id
Example:

200-123
200 OK CLIENT ID SENT

HISTORY GET CLIENT_MESSAGES { id | all | self } start number
List identifiers of messages sent by the client identified by id. If the special
identifier all is used, identifiers of messages sent by all clients are listed; if
the special identifier self is used, identifiers of messages sent by this client are
listed.

number of messages is listed, starting from the message numbered start. Both
number and start must be positive integers. The first message is numbered 1,
the second 2, etc. If the given range exceeds the range of available messages,
no error is signalled and the given range is restricted to the available range of
messages.

Messages are sorted by the criterion used in the last client’s invocation of the
HISTORY SORT command. If no HISTORY SET has been invoked yet, the messages
are sorted from the oldest to the newest, according to their time of arrival to
Speech Daemon.

Each message id is listed, together with other information, on a separate line,
in the following format:
id client-id client-name "time" priority "intro"

client-id is a numeric identifier of the client which sent the message, client-name
is its name as set by the SET CLIENT_NAME command, see Section 6.2.3 [Param-
eter setting commands|, page 16. time is the time of arrival of the message,
in the fixed length YYYY-MM-DD HH:MM:SS format. priority is the priority of
the message, one of the values accepted by the SET PRIORITY command, see
Section 6.2.3 [Parameter setting commands|, page 16.

intro is the introductory part of the message of a certain maximum length, see
the HISTORY SET SHORT_MESSAGE_LENGTH command. intro does not contain
any double quotes nor the line feed character.

All the message identifiers in the history, regardless of clients that issued them,

are unique within a single run of Speech Daemon and remain unchanged.
HISTORY GET LAST

List the id of the last message sent by the client.

The id is listed on a separate line of the following format:

id

If the client haven’t sent any message yet, return an error code.
HISTORY GET MESSAGE id

Return the text of the history message identified by id. If id doesn’t refer any

message, return an error code instead. The text is sent as a multi-line message,
with no escaping or special transformation.

An example SSIP response to the command:

Chapter 6: Speech Synthesis Internet Protocol (SSIP) 21

200-Hello, world!
200-How are you?
200 OK MESSAGE SENT

HISTORY CURSOR GET
Get the id of the message the history cursor is pointing on.

The id is listed on a separate line. Sample Speech Daemon reply to this com-
mand:

243-42
243 OK CURSOR POSITION RETURNED

HISTORY CURSOR SET { id | all | self } { first | last | posn }

Set the history cursor to the given position. The meaning of the first argument
after SET is the same as in the HISTORY GET CLIENT_MESSAGES command. The
argument first asks to set the cursor on the first position and the argument
last asks to set the cursor on the last position of the history of the given client.
If the argument pos is used, the position is set to n, where n is a positive integer.
It is an error if id doesn’t identify any client or if n doesn’t point to any existing
position in the history.

As for the order and numbering of the messages in the history, the same rules
apply as in HISTORY GET CLIENT_MESSAGES, see above.

HISTORY CURSOR { forward | backward }
Move the cursor one position forward, resp. backward, within the messages
of the client specified in the last HISTORY CURSOR SET command. If there is no
next, resp. previous, message, don’t move the cursor and return an error code.

HISTORY SAY id
Speak the message from history identified by id. If id doesn’t refer any message,
return an error code instead.

The message is spoken as it would be sent by its originating command (SPEAK
or SOUND_ICON), but the current settings (priority, etc.) apply.

HISTORY SORT { asc | desc } { time | user | client_name | priority | message_type
}
Sort the messages in history according to the given criteria. If the second
command argument is asc, sort in the ascending order, if it is desc, sort in the
descending order. The third command argument specifies the message property

to order by:
time Time of arrival of the message.
user User name.

client_name
Client name, excluding user name.

priority Priority.

message_type
Type of the message (text, sound icon, character, key), in the order
specified in the Speech Daemon configuration or by the HISTORY
SET MESSAGE_TYPE_ORDERING command.

Chapter 6: Speech Synthesis Internet Protocol (SSIP) 22

The sorting is stable — order of all the messages that are equal in the given
ordering remains the same.

The sorting is specific to the given client connection, other connections are
unaffected by invocation of this command.

HISTORY SET SHORT_MESSAGE_LENGTH length
Set the maximum length of short versions of history messages to length char-
acters. length must be a non-negative integer.

Short (truncated) versions of history messages are used e.g. in the answer to
the HISTORY GET CLIENT_MESSAGES format.

HISTORY SET MESSAGE_TYPE_ORDERING "ordering"
Set the ordering of the message types, from the minimum to the maximum.
ordering is a sequence of the following symbols, separated by spaces: text,
sound_icon, char, key. The symbols are case insensitive and each of them
must be present in ordering exactly once.

The specified ordering can be used by the HISTORY SORT command.
HISTORY SEARCH { id | all | self } "condition"
Return the list of history messages satisfying condition. The command allows

searching messages by given words. The output format is the same as of the
HISTORY GET CLIENT_MESSAGES command.

The meaning of the first argument after SEARCH is the same as in the HISTORY
GET CLIENT_MESSAGES command.

condition is constructed according to the following grammar rules:

condition :: word
Matches messages containing word.

condition :: (! condition)
Negation of the given condition.

condition :: (condition [& condition ...])
Logical AND — all the conditions must be satisfied.

condition :: (condition [| condition ...])
Logical OR — at least one of the conditions must be satisfied.
Spaces within the condition are insignificant and ignored.
The following rules apply to words:
— word is a sequence of adjacent alphanumeric characters.

— If word contains any upper-case letter, the search for the word is case
sensitive, otherwise it’s case insensitive.

— word must match whole word, not only its substring.

— word can contain the wild card characters 7, substituting any single al-
phanumeric character, and *, substituting any number (incl. zero) of al-
phanumeric characters.

Returned messages are sorted by the following rules:

Chapter 6: Speech Synthesis Internet Protocol (SSIP) 23

1. The primary sorting is defined by the number of the satisfied subconditions
on the top level of the given condition, from the highest (best matching
messages first) to the lowest. This takes any effect only if the given condi-
tion is the OR rule.

2. The criterion used in the last client’s invocation of the HISTORY SORT com-
mand. If no HISTORY SORT has been invoked yet, the messages are sorted
from the oldest to the newest, according to their time of arrival to Speech
Daemon.

6.2.6 Other commands

QUIT Close the connection.

HELP Print a short list of all SSIP commands, as a multi-line message.

6.3 Return codes

Each line of the SSIP output starts with a three-digit numeric code of the form NXX
where N determines the result group and xx denotes the finer classification of the result.

SSIP defines the following result groups:

Ixx Informative response — general information about the protocol, help messages.
2xx Operation was completely successful.

3xx Server error, problem on the server side.

Ixx Client error, invalid arguments or parameters received.

bxx Client error, invalid command syntax, unparseable input.

Result groups 1xx and 2xx correspond to successful actions, other groups to unsuccessful
actions. Only the groups defined here may be returned from the Speech Daemon.

Currently, only the meaning of the first digit of the result code is defined, the last two
digits are insignificant and can be of any value. Clients shouldn’t rely on the unspecified
digits in any way. If you are going to write your own SSIP implementation, please consult
the authors of Speech Daemon to define more precise set of return codes.

6.4 Example of an SSIP relation

The following example illustrates a sample relation with SSIP. The client connects to
the Speech Daemon, sets all the common parameters, sends two text messages, displays
the list of clients, instructs Speech Daemon to repeat the second message, and closes the
connection. Lines starting with a numeric code are response lines of the server, other lines
are the lines sent by the client.

SET CLIENT_NAME joe:vi:default
208 OK CLIENT NAME SET
SET PRIORITY 2

Chapter 6: Speech Synthesis Internet Protocol (SSIP)

202 0K PRIORITY SET

SPEAK

230 OK RECEIVING DATA

Hello, I’m a Speech Daemon communication example!
How are you?

225 0K MESSAGE QUEUED
SPEAK

230 0K RECEIVING DATA
Still there?

225 0K MESSAGE QUEUED
HISTORY GET CLIENT_LIST
240-1 jim:Emacs:default O
240-2 jim:Emacs:default O
240-3 unknown:unknown:unknown O
240-4 jim:Emacs:default 1
240-5 joe:vi:default 1
240 OK CLIENTS LIST SENT
HISTORY GET LAST

242-39 joe:vi:default

242 0K LAST MSG SAID

QUIT

231 HAPPY HACKING

24

Chapter 7: Priorities 25

7 Priorities

The possibility to distinguish between several message priority levels seems to be essen-
tial. Each message sent by client to speech server should have a priority level assigned.

Speech Daemon provides the system of three priority levels. Every message will either
contain explicit level information, or the default value will be considered. There is a separate
message queue for each of the levels. The behavior is as follows:

7.1 Level 1

These messages will be said immediately as they come to server. They are never in-
terrupted. These messages should be as short as possible, because they block the output
of all other messages. When several concurrent messages are received by server, they are
queued and said in the order, they came. When a new message of level 1 comes during
lower level message is spoken, lower level message is canceled and removed from the queue
(this message is already stored in the history)

7.2 Level 2

Second level messages are said in the moment, when there is no message of level 1 queued.
Several messages of level 2 are said in the order, they are received (queued, but in their own
queue). This is the default level for messages without explicit level information.

7.3 Level 3

Third level messages are only said, when there are no messages of any higher level queued.
If there are level 3 messages being said or waiting in queues, they are interrupted by the
last incoming level 3 message and this one is said, in other words, level 3 is interrupting
itself.

7.4 How to use them wisely

Example uses for level one are:
error messages

very important messages

Example uses for level two are:
regular program messages
menus

text the user is working on

Example uses for level three are:

Chapter 7: Priorities

less important status information

letters when typing input

26

Chapter 8: Multiple output modules 27

8 Multiple output modules

Speech Daemon supports concurrent use of multiple output modules. In the case these
output modules provide good synchronization, you can combine them in reading messages.
For example if modulel can speak English and Czech while module2 speaks only German,
the idea is that if there is something message in German, module2 is used, while modulel is
used for the other languages. These rules for selection of output modules can be influenced
through the configuration file ‘speechd.conf’.

If you want to compile and use a new output module, you should place it in ‘src/modules’
in your source directory of Speech Daemon and add it to ‘src/modules/Makefile.am’. You
can compile and install it by typing: make; su root; make install. The last step you have
to do is to let Speech Daemon know you want to use this new module by adding a line to
‘speechd.conf’ in your configuration directory

AddModule module_name

and possibly also changing the line
DefaultModule new_module

to make it default.

See Section 4.3 [Output modules|, page 9.

Chapter 9: Message history 28

9 Message history

9.1 Access rights

To protect privacy of users, Speech Daemon restricts history access to a certain subset

of all the received messages. The following rules apply:

All the messages issued by a client connection are accessible to that client connection.
All the messages sent by a given user are accessible to that user.

All the messages sent by the user speechd are accessible to all users on the system
running the Speech Daemon instance present in the group speechd.

No other messages are accessible.

Two users are considered the same, if and only if their connections originate on the

same host, their user names are the same, and their identity can be checked, as described
bellow. Speech daemon does not provide any explicit authentication mechanism. To check
the identity of users, Speech Daemon uses the Identification Protocol mechanism defined
by RFC 1413 to get the user’s identity. If user’s identity cannot be checked, the user is
considered different of all other connected or previously connected users.

Speech Daemon allows to specify user mapping in its configuration, allowing to change

certain users to different users, see Chapter 11 [Configuration|, page 31.

Chapter 10: Speech parameters 29

10 Speech parameters

10.1 Language selection

Various synthesizers provide different sets of possible languages, they are allowed to
speak. We must be able to receive a request for setting particular language (using ISO
language code) and reply, if the language is supported.

10.2 Speed

Sped of the speech is supported by all synthesizers, but the values and their ranges differ.
Each output module is responsible to set the speed to the value, best responding to current
setting. This may be a little bit difficult, because there is no exact scale. We could take
some longer English paragraph and take it as a base for our new scale. If this paragraph is
said in e.g. ten seconds, this means speed = 100, if it is said in twenty seconds, speed =
200. This way, we can coordinate different scales quite precisely (the paragraph should be
long enough).

10.3 Punctuation mode

Punctuation mode describes the way, in which the synthesizer works with non-
alphanumeric characters. Most synthesizers support several punctuation modes. We will
support a reasonable superset of those modes, which may be implemented in device driver,
when not supported by hardware.

10.4 Prosody

Prosody setting allows us, to distinguish punctuation characters in spoken text, as we are
familiar in normal speech. This means the way, we pronounce the text with interrogation
mark, coma, dot etc.

10.5 Pitch

Pitch is the voice frequency. We face the similar problems here, as with Speed setting.

10.6 Voice type

Most synthesizers provide several voice types, such as male, female, child etc. The set
is again different for each of the devices. Speech Daemon should try to find the nearest
possible (if the request is child female and it’s not available, we will try to use adult female
rather then adult male).

Chapter 10: Speech parameters 30

10.7 Spelling

Spelling mode is provided by nearly all devices and is also easy to emulate in output
module.

10.8 Capital letters recognition

That is again a widely supported feature. However it is desirable to support this inter-
nally, using the sound icons feature, but this requires a good possibility of synchronization,
which is not possible with all devices.

Chapter 11: Configuration 31

11 Configuration

Speech Daemon can be configured on several levels. There is a configuration file where
permanent settings are stored, but user and applications can also change the majority of
parameters on-fly by calling Speech Daemon functions. The third level of configuration can’t
be changed and it’s given by the capabilities of each output device (each output module for
each output device reports it’s capabilities when it’s loaded into Speech Daemon).

We use DotConf for the permanent text file based configuration. See ‘speechd.conf’.

Other parts of this manual deal with the runtime configuration.

Appendix A: Key names 32

Appendix A Key names

This appendix defines all the recognized symbolic key names. The names are case sen-
sitive.

A.1 Auxiliary keys

control
hyper
meta
shift

super
A.2 Control character keys

backspace
break

delete
down
end
enter
escape
f1

£2

£3

f4

£5

f6

7

£8

f9

£10
f11
f12
£13
f14

Appendix A: Key names 33

f15
16
f£17
£18
f19
£20
£21
£22
£23
£24
home
insert
kp-*
kp-+
kp—-
kp-.
kp-/
kp-0
kp-1
kp-2
kp-3
kp-4
kp-5
kp-6
kp-7
kp-8
kp-9
kp-enter
left
menu
next
num-lock

pause

Appendix A: Key names

print
prior
return
right

scroll-lock
space

tab

up

window

A.3 Special key names

space

underscore
double—-quote

34

Appendix B: Standard sound icons

Appendix B Standard sound icons

There are none currently.

35

Appendix C: Standard spelling tables 36

Appendix C Standard spelling tables

The following spelling table names are always present in the output of the LIST SPELLING
tables command (see Section 6.2.4 [Information retrieval commands], page 18):

spelling-short
spelling-long

Appendix D: Standard sound tables

Appendix D Standard sound tables

There are none currently.

37

Appendix E: Standard voices 38

Appendix E Standard voices

The following voice names are always present in the output of the LIST VOICES command
(see Section 6.2.4 [Information retrieval commands], page 18):

MALE1
MALE2
MALE3
FEMALE1
FEMALE2
FEMALE3

CHILD_MALE
CHILD_FEMALE

The actual presence of any of these voices is not guaranteed. But the command SET
VOICE (see Section 6.2.3 [Parameter setting commands|, page 16) must accept any of them.
If the given voice is not available, it is mapped to another voice by the output module.

Appendix F: GNU General Public License 39

Appendix F GNU General Public License

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Appendix F: GNU General Public License 40

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed

1.

2.

by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program,” below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification.”) Each licensee is
addressed as “you.”

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

Appendix F: GNU General Public License 41

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

¢. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

Appendix F: GNU General Public License 42

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Fach version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version,” you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

Appendix F: GNU General Public License 43

10.

11.

12.

If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix F: GNU General Public License 44

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 20yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w” and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c¢’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Appendix F: GNU General Public License 45

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Appendix G: GNU Free Documentation License 46

Appendix G GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix G: GNU Free Documentation License 47

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and
JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix G: GNU Free Documentation License 48

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix G: GNU Free Documentation License 49

o

N.

0.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix G: GNU Free Documentation License 50

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix G: GNU Free Documentation License 51

10.

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix G: GNU Free Documentation License 52

G.0.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with... Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Concept index

Concept index

gint synthesizer_close

gint synthesizer_close..................... 11

gint synthesizer_is_speaking

gint synthesizer_is_speaking 11

gint synthesizer_stop
gint synthesizer_stop...................... 11

A

access rights........ 28

B

Basic ideas, Motivation........................ 2

C

configuration 31

D

default values 31
Design 4
different synthesizers.............. 27

FDL, GNU Free Documentation License. 46
Festival......... i 3
Flite ... oo 3
FreeTTS o e 3

G

gint 10
GPL, GNU General Public License............ 39

H

history........oo 28
How toread.................................. 1

53
I
identd ... 28
Identification Protocol 28
int spd_pause() ...l 12
int spd_resume() 12
Odmluva.ooininiiiiii i 3
Other programs.covuiiieeina... 2
output module 27
P
Philosophy 2
priorities 25
RFC 1413 ... 28
Settings.........o 29
spd_close() ...t 12
spd_command_line() 12
spd_get_client_list() 12
spd_get_message_list_fd() 12
spd_history_select_client() 12
spd_init() ... 12
spd_pause_fd() 12
spd_resume_fd() 12
spd_say () ...t 12
spd_sayf() ... 12
Spd_stop() 12
spd_stop_£fd() L 12
Speech parameters........................... 29
speechd group............ 28
speechd user................................ 28
synthesizer_close() 9
synthesizer_is_speaking() 9
synthesizer_stop() 9
synthesizer_write()......................... 9
Synthesizers....... 2
T
tail recursion 53

U

USEr MAaPPING .« o voe e e e 28

Table of Contents

1 How toread thismanual 1
2 Introduction................. ..., 2
21 Whyand how...... 2

2.2 Current Statet 2

2.3 Design ... 4

2.4 User'spoint of view 7

2.5 Programmer’s point of view 7

3 Invoking, 8
3.1 Verbosity 8

3.1.1 Level 0. 8

3.1.2 Level 1... ... 8

3.1.3 Level 2.. .. 8

314 Level 3. o 8

315 Level 4. ... 8

3.1.6 Level 5. ..o 8

4 Internal structure.......................... 9
4.1 Definitions. 9

4.2 SEIVET COTE ..ottt e e et e et et e et ettt 9

4.3 Output modules............ 9

5 PublicAPI............ ..., 12
6 Speech Synthesis Internet Protocol (SSIP).. 13
6.1 Generalrules o 13

6.2 SSIP commandsS.c.ouiueiiiieeeaia. 14

6.2.1 Speech synthesis and sound output.............. 14

6.2.2 Controlling speech output 16

6.2.3 Parameter setting.............. 16

6.2.4 Retrieving information 18

6.2.5 History handling................ 19

6.2.6 Other commands 23

6.3 Returncodes 23

6.4 Example of an SSIP relation 23

7 Priorities............ciiiiiiiiiiiiiin. 25
T Level 1. ..o 25

T.2 Level 2. .. 25

7.3 Level 3. .. 25

7.4 How to use them wisely............. 25

iii

8 Multiple output modules.................. 27

9 Message history 28

9.1 Access Tights.o 28

10 Speech parameters....................... 29

10.1 Language selection 29

10.2 Speed ... 29

10.3 Punctuation mode 29

10.4 Prosody .. .ovoie 29

105 Pitch. ..o 29

10.6 Voice type . ..o 29

10.7 Spelling 30

10.8 Capital letters recognition 30

11 Configuration 31

Appendix A Keynames.................... 32

A1 Auxiliary Keys.......oooiii 32

A.2 Control character keys 32

A.3 Special key names 34

Appendix B Standard sound icons 35

Appendix C Standard spelling tables........ 36

Appendix D Standard sound tables 37

Appendix E Standard voices................ 38

Appendix F GNU General Public License ... 39

Preamble. 39
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION ... 40

How to Apply These Terms to Your New Programs............ 44

Appendix G GNU Free Documentation License
.. 46

G.0.1 ADDENDUM: How to use this License for your
documentso i 52

Concept indexciiiiiiinnnnnnnn.. 53

v

	How to read this manual
	Introduction
	Why and how
	Current state
	Design
	User's point of view
	Programmer's point of view

	Invoking
	Verbosity
	Level 0
	Level 1
	Level 2
	Level 3
	Level 4
	Level 5

	Internal structure
	Definitions
	Server core
	Output modules

	Public API
	Speech Synthesis Internet Protocol (SSIP)
	General rules
	SSIP commands
	Speech synthesis and sound output
	Controlling speech output
	Parameter setting
	Retrieving information
	History handling
	Other commands

	Return codes
	Example of an SSIP relation

	Priorities
	Level 1
	Level 2
	Level 3
	How to use them wisely

	Multiple output modules
	Message history
	Access rights

	Speech parameters
	Language selection
	Speed
	Punctuation mode
	Prosody
	Pitch
	Voice type
	Spelling
	Capital letters recognition

	Configuration
	Key names
	Auxiliary keys
	Control character keys
	Special key names

	Standard sound icons
	Standard spelling tables

	Standard sound tables
	Standard voices
	GNU General Public License
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	Concept index
	How to read this manual
	Introduction
	Why and how
	Current state
	Design
	User's point of view
	Programmer's point of view
	Invoking
	Verbosity
	Level 0
	Level 1
	Level 2
	Level 3
	Level 4
	Level 5
	Internal structure
	Definitions
	Server core
	Output modules
	Public API
	Speech Synthesis Internet Protocol (SSIP)
	General rules
	SSIP commands
	Speech synthesis and sound output
	Controlling speech output
	Parameter setting
	Retrieving information
	History handling
	Other commands
	Return codes
	Example of an SSIP relation
	Priorities
	Level 1
	Level 2
	Level 3
	How to use them wisely
	Multiple output modules
	Message history
	Access rights
	Speech parameters
	Language selection
	Speed
	Punctuation mode
	Prosody
	Pitch
	Voice type
	Spelling
	Capital letters recognition
	Configuration
	Key names
	Auxiliary keys
	Control character keys
	Special key names
	Standard sound icons
	Standard spelling tables
	Standard sound tables

	Standard voices
	GNU General Public License
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	Concept index

